Get job history in session
Obtains the job history retained in the specified session.
curl --request GET \
--url https://ai.data.cloud/api/v2/team/sessions/{id}/history \
--header 'x-pd-api-key: <api-key>'
{
"code": 0,
"data": {
"total_items": 1,
"page_number": 1,
"page_size": 10,
"records": [
{
"job_id": "job-1dsfasddfasgddsaffds",
"question": {
"blocks": [
{
"type": "MESSAGE",
"content": "Check for negative values across all sales columns"
}
]
},
"answer": {
"blocks": [
{
"type": "MESSAGE",
"content": "- Check for negative values across all sales columns.\n- Filter the DataFrame to retain only rows with no negative sales values.",
"group_id": "ba582fc9-bb36-4c5d-a8e8-d35bda6389cd",
"group_name": "Identify the channels with negative sales values by examining each day's sales data. Filter out the rows where any sales value is negative.",
"stage": "Analyze"
},
{
"type": "CODE",
"content": "```python\n\nimport pandas as pd\n\ndef invoke(input_0: pd.DataFrame) -> pd.DataFrame:\n '''\n input_0: pd.DataFrame SalesByChannelByDay_Summary_Demo.Sheet1_0_table_1.csv\n '''\n # Identify columns that represent sales data (all except the first column)\n sales_columns = input_0.columns[1:]\n \n # Filter rows where any sales value is negative\n filtered_df = input_0[~(input_0[sales_columns] < 0).any(axis=1)]\n \n # Assign the result to the output variable\n output = filtered_df\n \n return output\n\n```",
"group_id": "ba582fc9-bb36-4c5d-a8e8-d35bda6389cd",
"group_name": "Identify the channels with negative sales values by examining each day's sales data. Filter out the rows where any sales value is negative.",
"stage": "Analyze"
},
{
"type": "TABLE",
"content": "https://s3.amazonaws.com/powerdrilltest/tmp_datasource_cache/code_result/clvl4cad2001q01l1m522hxlu/baf7d6d1-fb81-4fdb-bcdd-32923d214c7b.csv?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241018T104617Z&X-Amz-SignedHeaders=host&X-Amz-Expires=599&X-Amz-Credential=AKIARLSQLXURHEIDN4OZ%2F20241018%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=9bcb5af552793f162e35f41d62fb9306cf90888924bfbdce81ea687265fddf83",
"group_id": "ba582fc9-bb36-4c5d-a8e8-d35bda6389cd",
"group_name": "Identify the channels with negative sales values by examining each day's sales data. Filter out the rows where any sales value is negative.",
"stage": "Analyze"
},
{
"type": "MESSAGE",
"content": "- Sum the sales across all days for each channel.\n- Create a new DataFrame with the channel names and their corresponding total sales.",
"group_id": "47183fd1-307b-4408-9986-e9238d952ec1",
"group_name": "Calculate the overall sales trend for the identified channels with negative sales values. This involves summing up the sales across all days for each channel and analyzing the trend.",
"stage": "Analyze"
},
{
"type": "CODE",
"content": "```python\n\nimport pandas as pd\n\ndef invoke(negative_sales_channels: pd.DataFrame) -> pd.DataFrame:\n '''\n negative_sales_channels: pd.DataFrame negative_sales_channels.csv\n '''\n # Sum the sales across all days for each channel\n total_sales = negative_sales_channels.iloc[:, 1:].sum(axis=1)\n \n # Create a new DataFrame with the channel names and their corresponding total sales\n output = pd.DataFrame({\n 'Channel': negative_sales_channels.iloc[:, 0],\n 'Total Sales': total_sales\n })\n \n return output\n\n```",
"group_id": "47183fd1-307b-4408-9986-e9238d952ec1",
"group_name": "Calculate the overall sales trend for the identified channels with negative sales values. This involves summing up the sales across all days for each channel and analyzing the trend.",
"stage": "Analyze"
},
{
"type": "TABLE",
"content": "https://s3.amazonaws.com/powerdrilltest/tmp_datasource_cache/code_result/clvl4cad2001q01l1m522hxlu/10cffac2-8bf3-45f4-86e6-1ed8457329f2.csv?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241018T104617Z&X-Amz-SignedHeaders=host&X-Amz-Expires=600&X-Amz-Credential=AKIARLSQLXURHEIDN4OZ%2F20241018%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=c6f5b522d2ddceea730304b86a45d5f5165f05f9fda3c1d275d11e9022c1e7ac",
"group_id": "47183fd1-307b-4408-9986-e9238d952ec1",
"group_name": "Calculate the overall sales trend for the identified channels with negative sales values. This involves summing up the sales across all days for each channel and analyzing the trend.",
"stage": "Analyze"
},
{
"type": "MESSAGE",
"content": "- Replace any negative sales values with zero in the data.\n- Sum the sales across all days for each channel.\n- Create a new data structure with the summed sales values.",
"group_id": "6b93c2b1-8908-4c2b-afb2-2a81f2d24739",
"group_name": "Calculate the overall sales trend for the same channels but excluding the negative sales values. This involves setting negative values to zero or removing them and then summing up the sales across all days for each channel.",
"stage": "Analyze"
},
{
"type": "CODE",
"content": "```python\n\nimport pandas as pd\n\ndef invoke(negative_sales_channels: pd.DataFrame) -> pd.DataFrame:\n '''\n negative_sales_channels: pd.DataFrame negative_sales_channels.csv\n '''\n # Replace negative values with zero\n negative_sales_channels.iloc[:, 1:] = negative_sales_channels.iloc[:, 1:].clip(lower=0)\n \n # Sum the sales across all days for each channel\n sales_sum = negative_sales_channels.iloc[:, 1:].sum(axis=1)\n \n # Create a new DataFrame with the summed sales values\n output = pd.DataFrame({\n 'Channel': negative_sales_channels.iloc[:, 0],\n 'Total Sales': sales_sum\n })\n \n return output\n\n```",
"group_id": "6b93c2b1-8908-4c2b-afb2-2a81f2d24739",
"group_name": "Calculate the overall sales trend for the same channels but excluding the negative sales values. This involves setting negative values to zero or removing them and then summing up the sales across all days for each channel.",
"stage": "Analyze"
},
{
"type": "TABLE",
"content": "https://s3.amazonaws.com/powerdrilltest/tmp_datasource_cache/code_result/clvl4cad2001q01l1m522hxlu/f4c99616-dd7c-48b1-8a35-d3141d732c36.csv?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241018T104617Z&X-Amz-SignedHeaders=host&X-Amz-Expires=600&X-Amz-Credential=AKIARLSQLXURHEIDN4OZ%2F20241018%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=d21a8d939ab09547bc201754ba253ca6c0d1da5361752f2228237e3ff59be256",
"group_id": "6b93c2b1-8908-4c2b-afb2-2a81f2d24739",
"group_name": "Calculate the overall sales trend for the same channels but excluding the negative sales values. This involves setting negative values to zero or removing them and then summing up the sales across all days for each channel.",
"stage": "Analyze"
},
{
"type": "MESSAGE",
"content": "- Merge the two datasets on the 'Channel' column to align sales data for comparison.\n- Calculate the difference in 'Total Sales' between the datasets for each channel.\n- Store the results, including channel name and calculated difference, in a new dataset.",
"group_id": "3488f538-f7fc-4c0e-a265-b66e3a38d41e",
"group_name": "Compare the sales trends with and without negative sales values to determine the impact of negative sales on the overall sales trend for the affected channels.",
"stage": "Analyze"
},
{
"type": "CODE",
"content": "```python\n\nimport pandas as pd\n\ndef invoke(sales_trend_with_negatives: pd.DataFrame, sales_trend_without_negatives: pd.DataFrame) -> pd.DataFrame:\n # Merge the two DataFrames on the 'Channel' column\n merged_df = pd.merge(sales_trend_with_negatives, sales_trend_without_negatives, on='Channel', suffixes=('_with_negatives', '_without_negatives'))\n \n # Calculate the difference in 'Total Sales' between the two DataFrames\n merged_df['Sales Difference'] = merged_df['Total Sales_without_negatives'] - merged_df['Total Sales_with_negatives']\n \n # Create a new DataFrame to store the results\n output = merged_df[['Channel', 'Sales Difference']]\n \n return output\n\n```",
"group_id": "3488f538-f7fc-4c0e-a265-b66e3a38d41e",
"group_name": "Compare the sales trends with and without negative sales values to determine the impact of negative sales on the overall sales trend for the affected channels.",
"stage": "Analyze"
},
{
"type": "TABLE",
"content": "https://s3.amazonaws.com/powerdrilltest/tmp_datasource_cache/code_result/clvl4cad2001q01l1m522hxlu/aaf4f2f7-e2db-4f2e-98ae-0bdd18f42333.csv?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241018T104617Z&X-Amz-SignedHeaders=host&X-Amz-Expires=600&X-Amz-Credential=AKIARLSQLXURHEIDN4OZ%2F20241018%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=19fcfe97c70bf40292b920ecbf0299c101e1de11e49b54fb8f62934b6e874f52",
"group_id": "3488f538-f7fc-4c0e-a265-b66e3a38d41e",
"group_name": "Compare the sales trends with and without negative sales values to determine the impact of negative sales on the overall sales trend for the affected channels.",
"stage": "Analyze"
},
{
"type": "MESSAGE",
"content": "\n\n`Analyzing Conclusions` \n\n### The impact of negative sales values on overall sales trends\n\n#### Sales variance analysis\n\n",
"group_id": "fd1a62e6-48cf-4ac1-8bac-025665444710",
"group_name": "Conclusions",
"stage": "Respond"
},
{
"type": "TABLE",
"content": "https://s3.amazonaws.com/powerdrilltest/tmp_datasource_cache/code_result/clvl4cad2001q01l1m522hxlu/aaf4f2f7-e2db-4f2e-98ae-0bdd18f42333.csv?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241018T104617Z&X-Amz-SignedHeaders=host&X-Amz-Expires=600&X-Amz-Credential=AKIARLSQLXURHEIDN4OZ%2F20241018%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=19fcfe97c70bf40292b920ecbf0299c101e1de11e49b54fb8f62934b6e874f52",
"group_id": "fd1a62e6-48cf-4ac1-8bac-025665444710",
"group_name": "Conclusions",
"stage": "Respond"
},
{
"type": "MESSAGE",
"content": "\n\n- **Sales variance**:In all channels (including EC, JD, Tmall, WeChat, retail, corporate stores, outlets, and total), the sales difference is 0.0. This indicates that regardless of the presence of negative sales values, the sales trend has not changed.\n\n#### Conclusion and Insights\n- **The impact of negative sales values**:Based on the provided data, negative sales values have no impact on the overall sales trend of the affected channels, as the sales variance for all channels is 0.0.\n- **Data consistency**:The sales discrepancies across all channels are consistent, indicating that there are no anomalies or deviations caused by negative sales values during data processing or analysis.",
"group_id": "fd1a62e6-48cf-4ac1-8bac-025665444710",
"group_name": "Conclusions",
"stage": "Respond"
},
{
"type": "SOURCES",
"content": [
{
"source": "SalesByChannelByDay_Summary_Demo.xlsx",
"datasource_id": "cm2ej4wmo000001fcdkwbdrml",
"dataset_id": "cm2ej4vx900hp01l1o378zr9o",
"file_type": "xlsx",
"external_id": ""
}
],
"group_id": "",
"group_name": "",
"stage": "Respond"
},
{
"type": "QUESTIONS",
"content": [
"Analyze the specific channels with negative sales values on different dates and discuss whether the sales strategies of these channels might lead to negative values.",
"Study the long-term impact of negative sales values on overall sales trends and assess whether adjustments to data analysis methods are needed to more accurately reflect the actual situation.",
"Investigate the source of negative sales values, whether they are related to returns, discounts, or other factors, and propose possible solutions to reduce the occurrence of negative values."
],
"group_id": "-1",
"stage": "Respond"
}
]
}
}
]
}
}
Example request:
curl --request GET \
--url https://ai.data.cloud/api/v2/team/sessions/{id}/history?user_id=tmm-dafasdfasdfasdf \
--header 'x-pd-api-key: <api-key>'
Example response:
{
"code": 0,
"data": {
"total_items": 1,
"page_number": 1,
"page_size": 10,
"records": [
{
"job_id": "job-1dsfasddfasgddsaffds",
"question": {
"blocks": [
{
"type": "MESSAGE",
"content": "Check for negative values across all sales columns"
}
]
},
"answer": {
"blocks": [
{
"type": "MESSAGE",
"content": "- Check for negative values across all sales columns.\n- Filter the DataFrame to retain only rows with no negative sales values.",
"group_id": "ba582fc9-bb36-4c5d-a8e8-d35bda6389cd",
"group_name": "Identify the channels with negative sales values by examining each day's sales data. Filter out the rows where any sales value is negative.",
"stage": "Analyze"
},
{
"type": "CODE",
"content": "```python\n\nimport pandas as pd\n\ndef invoke(input_0: pd.DataFrame) -> pd.DataFrame:\n '''\n input_0: pd.DataFrame SalesByChannelByDay_Summary_Demo.Sheet1_0_table_1.csv\n '''\n # Identify columns that represent sales data (all except the first column)\n sales_columns = input_0.columns[1:]\n \n # Filter rows where any sales value is negative\n filtered_df = input_0[~(input_0[sales_columns] < 0).any(axis=1)]\n \n # Assign the result to the output variable\n output = filtered_df\n \n return output\n\n```",
"group_id": "ba582fc9-bb36-4c5d-a8e8-d35bda6389cd",
"group_name": "Identify the channels with negative sales values by examining each day's sales data. Filter out the rows where any sales value is negative.",
"stage": "Analyze"
},
{
"type": "TABLE",
"content": "https://s3.amazonaws.com/powerdrilltest/tmp_datasource_cache/code_result/clvl4cad2001q01l1m522hxlu/baf7d6d1-fb81-4fdb-bcdd-32923d214c7b.csv?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241018T104617Z&X-Amz-SignedHeaders=host&X-Amz-Expires=599&X-Amz-Credential=AKIARLSQLXURHEIDN4OZ%2F20241018%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=9bcb5af552793f162e35f41d62fb9306cf90888924bfbdce81ea687265fddf83",
"group_id": "ba582fc9-bb36-4c5d-a8e8-d35bda6389cd",
"group_name": "Identify the channels with negative sales values by examining each day's sales data. Filter out the rows where any sales value is negative.",
"stage": "Analyze"
},
{
"type": "MESSAGE",
"content": "- Sum the sales across all days for each channel.\n- Create a new DataFrame with the channel names and their corresponding total sales.",
"group_id": "47183fd1-307b-4408-9986-e9238d952ec1",
"group_name": "Calculate the overall sales trend for the identified channels with negative sales values. This involves summing up the sales across all days for each channel and analyzing the trend.",
"stage": "Analyze"
},
{
"type": "CODE",
"content": "```python\n\nimport pandas as pd\n\ndef invoke(negative_sales_channels: pd.DataFrame) -> pd.DataFrame:\n '''\n negative_sales_channels: pd.DataFrame negative_sales_channels.csv\n '''\n # Sum the sales across all days for each channel\n total_sales = negative_sales_channels.iloc[:, 1:].sum(axis=1)\n \n # Create a new DataFrame with the channel names and their corresponding total sales\n output = pd.DataFrame({\n 'Channel': negative_sales_channels.iloc[:, 0],\n 'Total Sales': total_sales\n })\n \n return output\n\n```",
"group_id": "47183fd1-307b-4408-9986-e9238d952ec1",
"group_name": "Calculate the overall sales trend for the identified channels with negative sales values. This involves summing up the sales across all days for each channel and analyzing the trend.",
"stage": "Analyze"
},
{
"type": "TABLE",
"content": "https://s3.amazonaws.com/powerdrilltest/tmp_datasource_cache/code_result/clvl4cad2001q01l1m522hxlu/10cffac2-8bf3-45f4-86e6-1ed8457329f2.csv?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241018T104617Z&X-Amz-SignedHeaders=host&X-Amz-Expires=600&X-Amz-Credential=AKIARLSQLXURHEIDN4OZ%2F20241018%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=c6f5b522d2ddceea730304b86a45d5f5165f05f9fda3c1d275d11e9022c1e7ac",
"group_id": "47183fd1-307b-4408-9986-e9238d952ec1",
"group_name": "Calculate the overall sales trend for the identified channels with negative sales values. This involves summing up the sales across all days for each channel and analyzing the trend.",
"stage": "Analyze"
},
{
"type": "MESSAGE",
"content": "- Replace any negative sales values with zero in the data.\n- Sum the sales across all days for each channel.\n- Create a new data structure with the summed sales values.",
"group_id": "6b93c2b1-8908-4c2b-afb2-2a81f2d24739",
"group_name": "Calculate the overall sales trend for the same channels but excluding the negative sales values. This involves setting negative values to zero or removing them and then summing up the sales across all days for each channel.",
"stage": "Analyze"
},
{
"type": "CODE",
"content": "```python\n\nimport pandas as pd\n\ndef invoke(negative_sales_channels: pd.DataFrame) -> pd.DataFrame:\n '''\n negative_sales_channels: pd.DataFrame negative_sales_channels.csv\n '''\n # Replace negative values with zero\n negative_sales_channels.iloc[:, 1:] = negative_sales_channels.iloc[:, 1:].clip(lower=0)\n \n # Sum the sales across all days for each channel\n sales_sum = negative_sales_channels.iloc[:, 1:].sum(axis=1)\n \n # Create a new DataFrame with the summed sales values\n output = pd.DataFrame({\n 'Channel': negative_sales_channels.iloc[:, 0],\n 'Total Sales': sales_sum\n })\n \n return output\n\n```",
"group_id": "6b93c2b1-8908-4c2b-afb2-2a81f2d24739",
"group_name": "Calculate the overall sales trend for the same channels but excluding the negative sales values. This involves setting negative values to zero or removing them and then summing up the sales across all days for each channel.",
"stage": "Analyze"
},
{
"type": "TABLE",
"content": "https://s3.amazonaws.com/powerdrilltest/tmp_datasource_cache/code_result/clvl4cad2001q01l1m522hxlu/f4c99616-dd7c-48b1-8a35-d3141d732c36.csv?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241018T104617Z&X-Amz-SignedHeaders=host&X-Amz-Expires=600&X-Amz-Credential=AKIARLSQLXURHEIDN4OZ%2F20241018%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=d21a8d939ab09547bc201754ba253ca6c0d1da5361752f2228237e3ff59be256",
"group_id": "6b93c2b1-8908-4c2b-afb2-2a81f2d24739",
"group_name": "Calculate the overall sales trend for the same channels but excluding the negative sales values. This involves setting negative values to zero or removing them and then summing up the sales across all days for each channel.",
"stage": "Analyze"
},
{
"type": "MESSAGE",
"content": "- Merge the two datasets on the 'Channel' column to align sales data for comparison.\n- Calculate the difference in 'Total Sales' between the datasets for each channel.\n- Store the results, including channel name and calculated difference, in a new dataset.",
"group_id": "3488f538-f7fc-4c0e-a265-b66e3a38d41e",
"group_name": "Compare the sales trends with and without negative sales values to determine the impact of negative sales on the overall sales trend for the affected channels.",
"stage": "Analyze"
},
{
"type": "CODE",
"content": "```python\n\nimport pandas as pd\n\ndef invoke(sales_trend_with_negatives: pd.DataFrame, sales_trend_without_negatives: pd.DataFrame) -> pd.DataFrame:\n # Merge the two DataFrames on the 'Channel' column\n merged_df = pd.merge(sales_trend_with_negatives, sales_trend_without_negatives, on='Channel', suffixes=('_with_negatives', '_without_negatives'))\n \n # Calculate the difference in 'Total Sales' between the two DataFrames\n merged_df['Sales Difference'] = merged_df['Total Sales_without_negatives'] - merged_df['Total Sales_with_negatives']\n \n # Create a new DataFrame to store the results\n output = merged_df[['Channel', 'Sales Difference']]\n \n return output\n\n```",
"group_id": "3488f538-f7fc-4c0e-a265-b66e3a38d41e",
"group_name": "Compare the sales trends with and without negative sales values to determine the impact of negative sales on the overall sales trend for the affected channels.",
"stage": "Analyze"
},
{
"type": "TABLE",
"content": "https://s3.amazonaws.com/powerdrilltest/tmp_datasource_cache/code_result/clvl4cad2001q01l1m522hxlu/aaf4f2f7-e2db-4f2e-98ae-0bdd18f42333.csv?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241018T104617Z&X-Amz-SignedHeaders=host&X-Amz-Expires=600&X-Amz-Credential=AKIARLSQLXURHEIDN4OZ%2F20241018%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=19fcfe97c70bf40292b920ecbf0299c101e1de11e49b54fb8f62934b6e874f52",
"group_id": "3488f538-f7fc-4c0e-a265-b66e3a38d41e",
"group_name": "Compare the sales trends with and without negative sales values to determine the impact of negative sales on the overall sales trend for the affected channels.",
"stage": "Analyze"
},
{
"type": "MESSAGE",
"content": "\n\n`Analyzing Conclusions` \n\n### The impact of negative sales values on overall sales trends\n\n#### Sales variance analysis\n\n",
"group_id": "fd1a62e6-48cf-4ac1-8bac-025665444710",
"group_name": "Conclusions",
"stage": "Respond"
},
{
"type": "TABLE",
"content": "https://s3.amazonaws.com/powerdrilltest/tmp_datasource_cache/code_result/clvl4cad2001q01l1m522hxlu/aaf4f2f7-e2db-4f2e-98ae-0bdd18f42333.csv?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241018T104617Z&X-Amz-SignedHeaders=host&X-Amz-Expires=600&X-Amz-Credential=AKIARLSQLXURHEIDN4OZ%2F20241018%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=19fcfe97c70bf40292b920ecbf0299c101e1de11e49b54fb8f62934b6e874f52",
"group_id": "fd1a62e6-48cf-4ac1-8bac-025665444710",
"group_name": "Conclusions",
"stage": "Respond"
},
{
"type": "MESSAGE",
"content": "\n\n- **Sales variance**:In all channels (including EC, JD, Tmall, WeChat, retail, corporate stores, outlets, and total), the sales difference is 0.0. This indicates that regardless of the presence of negative sales values, the sales trend has not changed.\n\n#### Conclusion and Insights\n- **The impact of negative sales values**:Based on the provided data, negative sales values have no impact on the overall sales trend of the affected channels, as the sales variance for all channels is 0.0.\n- **Data consistency**:The sales discrepancies across all channels are consistent, indicating that there are no anomalies or deviations caused by negative sales values during data processing or analysis.",
"group_id": "fd1a62e6-48cf-4ac1-8bac-025665444710",
"group_name": "Conclusions",
"stage": "Respond"
},
{
"type": "SOURCES",
"content": [
{
"source": "SalesByChannelByDay_Summary_Demo.xlsx",
"datasource_id": "cm2ej4wmo000001fcdkwbdrml",
"dataset_id": "cm2ej4vx900hp01l1o378zr9o",
"file_type": "xlsx",
"external_id": ""
}
],
"group_id": "",
"group_name": "",
"stage": "Respond"
},
{
"type": "QUESTIONS",
"content": [
"Analyze the specific channels with negative sales values on different dates and discuss whether the sales strategies of these channels might lead to negative values.",
"Study the long-term impact of negative sales values on overall sales trends and assess whether adjustments to data analysis methods are needed to more accurately reflect the actual situation.",
"Investigate the source of negative sales values, whether they are related to returns, discounts, or other factors, and propose possible solutions to reduce the occurrence of negative values."
],
"group_id": "-1",
"stage": "Respond"
}
]
}
}
]
}
}
Authorizations
Headers
The trace ID you set in your system to trace this request. It can be up to 128 characters in length. If the request fails, you can provide it to the Powerdrill team to help with troubleshooting.
Path Parameters
The ID of the target session.
To check sessions existing in your project, call GET /v2/team/sessions.
Query Parameters
The page number to start listing. If not specified, the default value 1
will be used.
The number of items on a single page. If not specified, the default value 10
will be used.
Your user ID, which uniquely identifies you within your team. To obtain your ID:
- If you're the team admin, refer to Check user information.
- If you're a system or virtual user, ask your team admin to check your user ID by referring to Check user information.
Response
Status code. 0 indicates that the operation is successful. Otherwise, the operation fails. For error troubleshooting, refer to Error Codes.
A paginated list of job records.
The total number of job records returned in the response.
The page number of the current page.
The number of items that are returned in a single page.
A list of job records returned on a page.
Information about each job record.
Your question.
A list of content blocks that make up the entire question.
The content of each question block.
The content type of the question block. Possible values are:
MESSAGE
: The content is a piece of text.CODE
: The content a code snippet in Markdown format.
MESSAGE
, CODE
The block content. It is a piece of text when the type
is MESSAGE
, and a code snippet when the type
is CODE
.
Powerdrill's answer to the question.
Powerdrill's answer.
A list of content blocks that make up the entire answer.
The content type of the answer block. Possible values are:
MESSAGE
: The content is a piece of text.CODE
: The content a code snippet.TABLE
: The content represents a table.IMAGE
: The content represents an image.SOURCE
: The content represents a reference source of the answer block.QUESTIONS
: Suggested questions generated by Powerdrill to help guide your follow-up exploration of the data.
MESSAGE
, CODE
, TABLE
, SOURCES
, QUESTIONS
The block content, which varies with the value of type
:
-
When
type
isMESSAGE
, the content is a piece of text. -
When
type
isCODE
, the content a code snippet in Markdown format. -
When
type
isTABLE
, the content represents a table, consisting of:name
: The.csv
file name.url
: The S3 key or URL to the file.expires_at
: The expiration time forurl
. To save the table for future use, make sure to download it before it expires.
-
When
type
isIMAGE
, the content represents an image, consisting of:name
: The image name.url
: The S3 key or URL to the image.expires_at
: The expiration time forurl
.
To save the image for future use, make sure to download it before it expires.
-
When
type
isSOURCE
, the content represents a reference source of the answer block, including:source
: The file name of the data source.datasource_id
: The ID of the data source.dataset_id
: The ID of the dataset.file_type
: The name extension of the data source file.
-
When
type
isQUESTIONS
, the content is suggested questions generated by Powerdrill to help guide your follow-up exploration of the data.
The ID of the group containing the answer block.
The name of the group containing the answer block.
There are two phases when Powerdrill generates an answer: Analyze
and Respond
. Answer blocks in the Analyze
phase are not part of the final answer; they represent the output of the analysis process and are used to help you understand how the answer is generated. Answer blocks in the Respond
phase are the final answer generated by Powerdrill in response to your question.
Analyze
, Respond
The job ID, which uniquely identifies the job in the session.